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Visual 3D scene reconstruction
From dense stereo to single camera structure from motion

Roland Brockers
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Introduction

Former projects:

University of Paderborn / Germany
Labor für Bildverarbeitung
• Biologically inspired computer vision algorithms

- Object recognition, 3D reconstruction

• Mobile robot platform design for tele-presence applications 

• Immersive human machine interfaces

• Virtual Robot Simulator

PhD: Cooperative Stereo Vision Algorithm using Cost  Relaxation

DFG research grant (at JPL): 
Stereo vision for mobile robot platforms
• Accurate 3D object borders

• Speed-up optimization algorithm

• Temporal stereo processing
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Overview

• Two view geometry and 3D scene reconstruction
• Stereo Vision
• Single Camera Structure from Motion
• Summary & Conclusion
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3D scene reconstruction

3D reconstruction using cameras as passive sensors

• 2D projection of 3D world
• At least 2 views for reconstruction
• Reconstruction relative to 

translation t

• two cameras in fixed constellation:
t, R known → stereo vision

• single moving camera:
t, R unknown → structure from motion up to scale

t,R
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Two view geometry

Perspective projection 

• 3D points 

• Image points

• Perspective projection

• Rigid body motion 

• Rigid body motion + projective projection
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Epipolar geometry

Epipolar constraint:
x1, x2 and t are coplanar

Essential matrix 
[Longuet-Higgings 1981]

• Maps a point x1 to an epipolar line Ex2

• 5 independent parameters (up to scale)
• assumes intrinsic parameters are known

Stereo vision:  t, R fixed and known from calibration
→ epipolar geometry can be pre-calculated
→ use rectification + epipolar constraint for correspondence search

Single moving camera:  t, R unknown
→ prior to 3D reconstruction, do motion estimation
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Overview

• Two view geometry and 3D scene reconstruction
• Stereo Vision
• Single Camera Structure from Motion
• Summary & Conclusion
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Stereo vision

Image processing pipeline

• Image acquisition & Pre-processing
• Correspondence search
• Passive triangulation
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Stereo vision
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Image processing pipeline

• Image acquisition & Pre-processing
– Image correction (e.g. removing of lens distortion)
– Rectification
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Stereo vision

Image processing pipeline

• Image acquisition & Pre-processing
• Correspondence search

– Calculation of a disparity map
– Difficulties due to ambiguities or occlusions

left view right view

Occlusions



4/22/2010 11

Stereo vision
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Image processing pipeline

• Image acquisition & Pre-processing
• Correspondence search
• Passive triangulation
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Correspondence search

?
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Correspondence search

Stereoscopic Constraints
• Epipolar constraint y
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Correspondence search

Stereoscopic Constraints
• Epipolar constraint
• Limited disparity range

• No transparent objects: Uniqueness constraint [Marr & Poggio, 1976]
• Solid objects:  Continuity constraint [Marr & Poggio, 1976] 

• Disparity gradient limit (humans: < 1.0) [Burt & Julesz, 1980]
• Order constraint

?
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SAD1 correspondence search

• Real time stereo algorithm
• Correlation with sum of absolute differences (SAD)

• Result, SAD1 
7x7 correlation windows

• � Post filter needed

Left-right consistency check Blob filter
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Motivation for Costrelax dense stereo algorithm

Motivation:
• Biologically inspired cooperative approach
• Optimizing of disparities by coupling the correspondence problems of 

neighboring image pixels
• Acceleration of the optimization by reformulating the optimization problem 

as a cost minimization

Implementation:
• Utilization of stereoscopic continuity constraint
• Global cost function with unique minimum
• Fast, iterative determination of the minimum with standard procedure, 

e. g. gradient descend algorithm 
• On interruption of the iteration, calculation of a „momentary“ disparity map, 

providing the best possible solution at the moment of interruption
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Costrelax algorithm

1. Initial correlation (Normalized Cross Correlation, 3x3 corr. windows)

2. Iterative optimization of correlation scores

3. Explicit occlusion detection and subpixel refinement
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Costrelax algorithm

Disparity space s(x,y,d)

y

yP

dmin

dmax

xP

d

x

Definition of variable vector     :

T
dnddnd )...,,,...,,( ),()1,1(),(),1( maxminminmin

ξξξξξ   +=

 ),(),,( dkdyxs ξ→ ],...,[],...,1[
maxmin

dddnk ∈∈    and    with

kyx →),(

ξ



4/22/2010 19

Costrelax algorithm

Distance to similarity measure Continuity constraint

Global cost function:

Coupling of neighboring variables in a local support area Ui.

Initial correlation scores:
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Costrelax algorithm
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Interpretation of the coupled variable system as a neural network 
[Marr & Poggio, 1976], [Reimann & Haken, 1994]

Local support area Ui :
• inside a constant disparity level (2D-window function) 
• inside disparity space (3D-window function)



4/22/2010 21

Costrelax algorithm
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Costrelax algorithm

After convergence:

• Determination of the pixel disparity by searching the maximum value of all 
assigned variables
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After optimization Disparity mapBefore optimization

Example: Variable values for a fixed disparity of 36 pixels (right person disparity)
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Post processing

Explicit occlusion detection
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Maximum search across all image pixels 
corresponding with the same pixel in the 
other view.

(Uniqueness constraint)

otherwise

Example: Random dot stereogram with a shifted quadratical texture patch

left view right view Result without  
occlusion detection

Result including  
occlusion detection
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Post processing
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with a 10% horizontal 
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Sub-pixel refinement

Cost function 

for all 1)()( ≤− jdid

T
ndd ],...,[~

1=ξ   mitwith



4/22/2010 25

First results

Original left view Disparity map SAD5 stereo Disparity map Costrelax
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Local support

Local support area

Ui defines the outer shape of local support for pixel i

wij defines the influence of neighbor j on i
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Fixed local support

Foreground fattening effect
caused by fixed local support
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Color-based adaptive weight local support
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Adaptive local support windows:

• fixed neighborhood window Ui

• weight  factor       for each window pixel depending on Gaussian weighted color 
distance in CIE-Lab color space and the Euclidian distance to the window center

ijγ
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Color-based adaptive weight local support

1 2 3

1 2 3

Example: Adaptive weights support window

Fixed 
local 

support

Adaptive 
local 

support
Support weights
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Qualitative Evaluation

Costrelax with adaptive weight local support
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Quantitative Evaluation

Algorithm Tsukuba
non   all    disc

Venus
non   all    disc

Teddy
non   all    disc

Cones
non   all    disc

Segment Support [1] 1.25  1.62  6.68 0.25  0.64  2.59 8.43  14.2  18.2 3.77  9.87  9.77

Adaptive Weight [2] 1.38  1.85  6.90 0.71  1.19  6.13 7.88  13.3  18.6 3.97  9.79 8.26

CostRelax [5]
(Adapt. weight local support)

2.91  3.49  11.4 0.60  1.11  6.45 7.92  13.7  20.9 3.59  9.43  10.3

CostRelax [3] (3D fixed loc. supp.) 4.76  6.08  20.3 1.41 2.48  18.5 8.18  15.9  23.8 3.91  10.2  11.8

CostRelax [4] (2D fixed loc. supp.) 6.33 1.44 9.60 5.24

Percentage of bad matching pixels for the Middlebury data set (          ) for non occluded
pixels (non), all pixels (all) and near discontinuities (disc) (cp. http://vision.middlebury.edu/stereo)

1=dδ

[1] Tombari, F.,Mattoccia, S., Di Stefano, L.: 
Segmentation-based adaptive support for 
accurate stereo correspondence. PSIVT 2007. 
LNCS 4872, pp. 427–438 (2007)

[2] Yoon, K.J., Kweon, I.S.: Adaptive support-
weight approach for correspondence search. 
IEEE Trans. PAMI 28, 650–656 (2006)

[3] Brockers, R., Hund, M., Mertsching, B.: Stereo 
vision using cost-relaxation with 3d support 
regions. IVCNZ 2005, pp. 96–101 (2005)

[4] Brockers, R., Hund, M.,Mertsching, B.: Stereo 
matching with occlusion detection using cost 
relaxation. ICIP 2005, pp. 389–392 (2005)

[5] Brockers, R.: Cooperative Stereo Matching 
with Color-Based Adaptive Local Support. 
CAIP 2009, LNCS 5702, pp. 1019–1027 (2009)
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Temporal stereo extension
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New term generates costs for all variables 
with prior disparity dpr, if variable value < 1

Several approaches to generate prior:

• Previous disparity map
• Previous 2 disparity maps + extrapolation
• Warped previous disparity map using 

motion estimation from Visual Odometrie

In image sequences use previous results as a disparity prior

Prior Forward motion Side motion

No noise SNR 
30dB

No noise SNR 
30dB

Sub-sampled damp 9.53% 30.56% -10.47% 18.52%

Previous dmap 31.04% 6.44% 2.46% 4.79%

Prev. dmap + 
confidence

8.83% 2.97% -2.10% 3.21%

Prev. 2 dmaps 24.55% 6.12% 12.88% 8.19%

Prev. damp + JPL VO 35.71% 24.28% 28.97% 20.98%

Prev. dmap + true VO 36.10% 24.04% 28.04% 21.00%

Table: Average improvement of false matching error
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Run times

• Adaptive local support to preserve fine object structures generates only linear overhead

• Iteration can stop when time is critical, in every iteration step, a momentary optimized 
disparity map is available

• Potential of significant benefit from parallel implementation on graphics card (CUDA)

Run times for

Intel Core2Quad @ 2.4 GHz,

Fixed local support

Image size Number of 
disparities

Iterations

20 40 80

512x384 16 0.315s 0.505s 0.855s

512x384 64 1.257s 2.003s 3.644s

512x384 128 2.786s 4.148s 7.164s

1024x768 16 1.295s 2.002s 3.389s

1024x768 64 4.728s 7.654s 13.457s

1024x768 128 9.507s 15.302s 26.954s
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Overview

• Two view geometry and 3D scene reconstruction
• Stereo Vision
• Single Camera Structure from Motion
• Summary & Conclusion
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Single moving camera

Single camera, unknown motion

Essential matrix:

• R, t can be recovered up to scale 
(in theory!) 

• 5 independent parameters

Calculation is very noise sensitive !!!
3D distribution of points is important.

021 =Εxx T RtΕ ][ ×=
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Single moving camera

Planar surface

Planar Homography

• R, t & n can be recovered (up to scale) [Longuet-Higgins 1986]
• 5 independent parameters

Robust to noise!
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Example: Landing spot detection

Flying quadrotor with down looking camera
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Example: Landing spot detection

Flying quadrotor with down looking camera

H1,2

frame 1 frame 2

Groundplane

Table

H1

H2

n
tracked 
feature 
points

Surface reconstruction 
with multiple homographies

ii
ntRH ,,→
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Example: Landing spot detection

Surface detection algorithm

• Detect feature points in images
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Example: Landing spot detection

Surface detection algorithm

• Detect feature points in images

• Match features between frames 
and track in image sequence
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Example: Landing spot detection

Surface detection algorithm

• Detect feature points in images

• Match features between frames 
and track in image sequence

• Detect planar surface patches 
by fitting homography to 
matched features

• Decompose homography into 
motion parameters R,t and ni

defined up to scale
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Example: Landing spot detection

Surface detection algorithm

• Detect feature points in images

• Match features between frames 
and track in image sequence

• Detect planar surface patches 
by fitting homography to 
matched features

• Decompose homography into 
motion parameters R,t and ni

defined up to scale

• If elevated surface is found, 
calculate landing spot
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Example: Landing spot detection

Feature detector

• Detector:  Center-surround STAR feature detector

• Detects “blob”-like structures

• Scale space implementation

• Longer continuous tracking than corner features in natural scenes

• Feature matching with SURF descriptors
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Example: Landing spot detection

3D Reconstruction

• Point wise reconstruction up to scale using 
feature matching, multiple homographies, 
and the plane equation

• Dense reconstruction up to scale using 
stereo algorithm after image alignment

Camera position

1=Xn T

i
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MAST experiment

STARMAC quadrotor platform (UC Berkeley)

• ~1.8 kg, 1x1x0.4 m

• 10-20 min flight time

• two CPU variants
– PC104 (x86)
– Gumstix Verdex (PXA270)

• VICON system for true state

• 640x480 pixel Point Grey Firefly 
Camera 



4/22/2010 46

MAST landing experiment

Landing spot detection for quadrotor with downward looking camera
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MAST landing experiment

Landing spot detection for quadrotor with downward looking camera
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MAST ingress experiment

Door/window detection for quadrotor with forward looking camera
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MAST ingress experiment

Door/window detection for quadrotor with forward looking camera
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Run times

Calculation times for feature matching & homography calculation 

• 800x600 image, 500 features, 3 scales
Core2Duo 2.4GHz, 1 core only

• Non optimized code

Feature Detection Integral images 5 ms

Filtering 30 ms

Extraction 18 ms

Descriptor 21 ms

Matching Upright SURF 14 ms

Homography calculation 2 planes 7 ms

Total 95 ms / 
10 fps
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Overview

• Two view geometry and 3D scene reconstruction
• Stereo Vision
• Single Camera Structure from Motion
• Summary & Conclusion
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Summary & Conclusions

Costrelax dense stereo algorithm

• Very robust to noise

• Low textured areas take advantage from highly textured neighboring areas  

• Produces very dense stereo results

• Due to the strict local design, high potential for major speed-up on graphics card 
implementation with e.g. CUDA. 

Single camera Structure-from-motion algorithm

• Longer tracking with Blob like features

• Multiple homography motion estimation

• In future implementation, recover scale from IMU -> visually aided inertial navigation
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